Augmentation of table of abundancies and non-abundancies

Augmentation of table of abundancies and non-abundancies which appeared in :
Abundancy "Outlaws" of the Form sigma(N)+t / N
William G. Stanton and Judy A. Holdener
Journal of Integer Sequences, Vol. 10(2007), Article 07.9.6 , pp. 1-19 .

Within the list of blue , green , red , and black abundancies and non-abundancies , pp. 13-18 , the abundancies shown in the table infra are coded as
black = abundancy status unknown , but ultimately are seen to be
blue = known to be an abundancy , by extending the reach of the search from 10^6 to 2^34 .
The computation was structured to make this table exhaustive over that range .

No member of this table is of the form

sigma ( p )  +  1     p + 2
-----------------  =  ----- .
       p                p
This is entirely consistent with the report of a somewhat similar computation to 10^16 with a similar result in D (Q.1) in
R. F. Ryan, "Results concerning uniqueness for
{\sigma (x)/x = \sigma (p^n q^m )/(p^n q^m)} and related topics",
Int. Math. J. 2 (2002), no. 5, 497 - 514.

With the identification here of 9 / 2 as an abundancy , the only remaining black = unknown entries among the first 29 entries of the list , through 10 / 3 , are of the form
p+2 / p , namely 5 / 3 , 7 / 5 , and 9 / 7 ,
corresponding to the first 3 odd primes .

Table .

abundancy
  ( N )        N

  9 /  2      8910720
 13 /  3     18506880
 14 /  3    208565280
 19 /  4    746444160
 19 /  8      4840192
 23 /  6   1907020800
 24 /  5    668304000
 25 /  6   2836487808
 30 /  7      2056320
 31 /  7      5322240
 32 /  7    164989440
 33 /  7     67858560
 33 /  8      9694080
 33 / 13      1444352
 34 /  7   5228496000
 34 /  9      2678400
 35 /  8     25159680
 35 /  9      7448760
 35 / 16     13137664
 37 /  8  10178138880
 37 /  9     17660160
 37 / 10      1962240
 37 / 11      4316928
 38 /  9      2744280
 40 /  9     52141320
 43 / 10   4260372480
 43 / 11   1544970240
 43 / 12    140451840
 43 / 13    284024832
 43 / 14     21848064
 43 / 16      3121152
 44 / 13      4333056
 45 / 11      3231360
 49 / 11    378069120
 49 / 12     29795040
 50 / 13      5346432
 51 / 11      5765760
 51 / 19      1884800
 52 / 11    203575680
 54 / 11     98017920
 54 / 13      2970240
 55 / 13    176432256
 55 / 14     13571712
 55 / 16      1938816
 56 / 11   2646483840
 57 / 13      2751840
 57 / 20     24200960
 57 / 22     13443584
 57 / 23    111324416
 60 / 13     26732160
 61 / 13   3127662720
 61 / 15   8555880960
 61 / 18   1711176192
 62 / 13     69189120
 63 / 16      1272960
 64 / 13   2144862720
 64 / 15      2031120
 64 / 27      6517665
 65 / 14   2461415040
 65 / 16      1935360
 65 / 17    123070752
 65 / 18      3701376
 66 / 13    882161280
 66 / 19      4523520
 66 / 23      1095168
 66 / 31   1386831872
 68 / 15     39312000
 68 / 19      5654400
 69 / 16    373201920
 69 / 19   4025932800
 69 / 20    211891200
 70 / 17    126628920
 70 / 31    407267584
 73 / 15  10456992000
 73 / 16    139426560
 73 / 17      4112640
 73 / 25      1388800
 74 / 17    300222720
 74 / 19     37282560
 74 / 23      9026304
 74 / 25    101382400
 74 / 31      4055296
 75 / 16   3346237440
 75 / 19      5581440
 75 / 23      1351296
 76 / 17     46652760
 76 / 25   3751148800
 76 / 31    150045952
 77 / 16    830269440
 77 / 18  14778339840
 77 / 19      2708640
 78 / 17    615353760
 80 / 17    886402440
 80 / 41      4466007
 81 / 17    296281440
 81 / 25     24752000
 83 / 25    381709200
 83 / 31     15268368
 84 / 17   3545609760
 84 / 19      2489760
 85 / 18    834261120
 85 / 19      9959040
 86 / 21    983162880
 86 / 23   3230392320
 86 / 25   2418892800
 86 / 31     96755712
 88 / 19     18960480
 88 / 25      9585000
 88 / 31   4160495616
 89 / 19   1832463360
 89 / 20     96445440
 89 / 21     22256640
 89 / 22     34974720
 89 / 23   4493368320
 89 / 24      3179520
 89 / 25     54758400
 89 / 26      6429696
 89 / 31      2190336
 90 / 19    169303680
 90 / 23      6756480
 91 / 19  11950848000
 91 / 20    628992000
 91 / 22     29082240
 91 / 23     60808320
 91 / 24      2643840
 92 / 21  13349145600
 93 / 19    438197760
 93 / 20     23063040
 93 / 22     16156800
 93 / 23     17487360
 93 / 26      1537536
 95 / 21    364989240
 95 / 22   3705077376
 95 / 23   3433643136
 95 / 24    149288832
 96 / 19  12697776000
 97 / 61      5659641
 98 / 23    685285920
 98 / 25      1404000
 98 / 61    548985177
 99 / 23    222963840
 99 / 25   2607120000
 99 / 29      6904320
 99 / 37     55790080
 99 / 38      1507840
 99 / 41      4555264
100 / 21  10219698720
100 / 27     10428264
100 / 31      1821312
count = 149

Walter Nissen

2000 Mathematics Subject Classification : Primary 11A25 ; Secondary 11Y55 , 11Y70

initially written 2008-01-26
comments updated 2008-03-10